- Origin of Quantum Physics
- Wave function
- Collapse of Wave Function
- Physically Accepted Wave function
- Normalization Explained
- Method of Normalization
- Orthogonality & Orthonormality
- Hilbert Space
- Quantization Rules
- Operator Formalism
- Commutator Bracket
- Linear Operator
- Hermitian Operator
- Projection Operator
- Unitary Operator
- Parity Operator
- Expectation Value
- Schrodinger Equation
- Wave-Particle Duality Using Schrodinger Equation
- Superposition of States
- Various Representations of Wave Function
- Probability Current Density
- Uncertainty in Operators
- Shortcut for Calculating Momentum Expectation Value
An operator  is said to be hermitian if Â$^{\dagger}=\hat{A}$ and it should satisfy the following relation. Dirac representation: $\left(\prec\phi|\hat{A}|\psi\succ\right)^{\dagger}=\prec\psi|\hat{A}^{\dagger}|\phi\succ=\prec\psi|\hat{A}|\phi\succ$ Schrodinger representation: $\left(\phi,\hat{A}\psi\right)=\left(\hat{A}\phi,\psi\right)$ $\Longrightarrow\intop\phi^{*}\hat{A}\psi d\text{${\tau}$}$=$\intop\left(\hat{A}\phi\right)^{*}\psi d \text{${\tau}$}$ Properties: (1) Eigenvalues of hermitian operators are real. (2) Eigenfunctions corresponding to different eigenvalues of a hermitian operator are orthogonal. (3) All physical observable in quantum mechanics are represented by hermitian operators. Example: $\left(\phi,\hat{p}_{x}\psi\right)$ = $\intop_{-\infty}^{\infty}\phi^{*}\left(-i\hbar\frac{\partial}{\partial x}\right)\psi dx$ = $\intop_{-\infty}^{\infty}\phi^{*}\left(-i\hbar\frac{\partial\psi}{\partial x}\right)dx$ = $-i\hbar\left[\phi^{*}\psi\right]_{-\infty}^{\infty}+i\hbar\intop_{-\infty}^{\infty}\left(\frac{d\phi^{*}}{dx}\right)\psi dx$ = $-i\hbar\intop_{-\infty}^{\infty}\left(\frac{d\phi^{*}}{dx}\right)\psi dx$ = $\intop_{-\infty}^{\infty}\hat{p}_{x}^{*}\phi^{*}\psi dx$ Hence, the momentum operator $\hat{p}_{x}$ is hermitian in nature. Similarly, we can see that $\frac{\partial}{\partial x}$ is anti-hermitian i.e. $\left[\frac{\partial}{\partial x}\right]^{\dagger}=-\frac{\partial}{\partial x}$