- Origin of Quantum Physics
- Wave function
- Collapse of Wave Function
- Physically Accepted Wave function
- Normalization Explained
- Method of Normalization
- Orthogonality & Orthonormality
- Hilbert Space
- Quantization Rules
- Operator Formalism
- Commutator Bracket
- Linear Operator
- Hermitian Operator
- Projection Operator
- Unitary Operator
- Parity Operator
- Expectation Value
- Schrodinger Equation
- Wave-Particle Duality Using Schrodinger Equation
- Superposition of States
- Various Representations of Wave Function
- Probability Current Density
- Uncertainty in Operators
- Shortcut for Calculating Momentum Expectation Value
$\triangle$ A = uncertainty in operator A, and it is calculated as followes $\triangle A = \sqrt{<A^{2}>-<A>^{2}}$ Problem: Calculate the expectation value of position and momentum of a particle represented by the wavefunction: $\psi(x) = \left\{ \begin{array}{c} Solution: $<\hat{x}>$ = $\frac{\intop_{-\infty}^{\infty}\psi^{*}(x\psi)dx}{\intop_{-\infty}^{\infty}\psi^{*}\psi dx}$ = $\frac{\intop_{-\infty}^{0}\psi^{*}(x\psi)dx\,+\,\intop_{0}^{L}\psi^{*}(x\psi)dx\,+\intop_{L}^{\infty}\psi^{*}(x\psi)dx\,}{\intop_{-\infty}^{\infty}\psi^{*}\psi dx}$ = $\frac{\frac{1}{L}\intop_{0}^{L}sin^{2}(\frac{\pi x}{L})xdx}{\frac{1}{L}\intop_{0}^{L}sin^{2}(\frac{\pi x}{L})dx}$ = $\frac{\frac{1}{2}\intop_{0}^{L}(1-cos\frac{2\pi x}{L})xdx}{\frac{1}{2}\intop_{0}^{L}(1-cos\frac{2\pi x}{L})dx}$ = $\frac{[\frac{x^{2}}{2}]{}_{0}^{L}-\intop_{0}^{L}(xcos\frac{2\pi x}{L})dx}{[x-\frac{L}{2\pi}sin\frac{2\pi x}{L}]_{0}^{L}}$ = $\frac{\frac{L^{2}}{2}-\{[x\frac{L}{2\pi}sin\frac{2\pi x}{L}]_{0}^{L}\,-\,\intop_{0}^{L}[\frac{L}{2\pi}sin\frac{2\pi x}{L}dx]\}}{L}$ = $\frac{\frac{L^{2}}{2}-\{0-\frac{L}{2\pi}\frac{L}{2\pi}[cos\frac{2\pi x}{L}]_{0}^{L}\,\}}{L}$ = $\frac{\frac{L^{2}}{2}-\frac{L^{2}}{4\pi}(1-1)}{L}$ = $\frac{L}{2}$ $<\hat{x}>$ = $\frac{L}{2}$ Now, Expectation Value of Momentum Operator, $<\hat{p}>$ = $\frac{\intop_{-\infty}^{\infty}\psi^{*}(p\psi)dx}{\intop_{-\infty}^{\infty}|\psi|^{2}dx}$ = $\frac{\frac{1}{L}\intop_{0}^{L}sin(\frac{\pi x}{L})\{-i\hbar\frac{d}{dx}sin(\frac{\pi x}{L})\}dx}{\frac{1}{L}\intop_{0}^{L}sin^{2}(\frac{\pi x}{L})dx}$ = $\frac{\frac{1}{L}\intop_{0}^{L}sin(\frac{\pi x}{L})\{-i\hbar\frac{d}{dx}sin(\frac{\pi x}{L})\}dx}{\frac{1}{L}\intop_{0}^{L}sin^{2}(\frac{\pi x}{L})dx}$ = $\frac{\frac{-i\hbar\pi}{L}\intop_{0}^{L}sin(\frac{\pi x}{L})cos(\frac{\pi x}{L})dx}{\intop_{0}^{L}sin^{2}(\frac{\pi x}{L})dx}$ = $\frac{\frac{-i\hbar\pi}{2L}\intop_{0}^{L}sin^{2}(\frac{2\pi x}{L})dx}{\intop_{0}^{L}sin^{2}(\frac{\pi x}{L})dx}$ = $\frac{\frac{-i\hbar\pi}{2L}\left[\frac{-cos(\frac{2\pi x}{L})}{\frac{2\pi}{L}}\right]_{0}^{L}}{\intop_{0}^{L}sin^{2}(\frac{\pi x}{L})dx}$ = $\frac{\frac{i\hbar\pi}{2L}(cos2\pi-cos0)}{\intop_{0}^{L}sin^{2}(\frac{\pi x}{L})dx}$ = 0
\frac{1}{\sqrt{L}}sin(\frac{\pi x}{L}),\,0<x<L\\
0,\,otherwise
\end{array}\right\}$