- Origin of Quantum Physics
- Wave function
- Collapse of Wave Function
- Physically Accepted Wave function
- Normalization Explained
- Method of Normalization
- Orthogonality & Orthonormality
- Hilbert Space
- Quantization Rules
- Operator Formalism
- Commutator Bracket
- Linear Operator
- Hermitian Operator
- Projection Operator
- Unitary Operator
- Parity Operator
- Expectation Value
- Schrodinger Equation
- Wave-Particle Duality Using Schrodinger Equation
- Superposition of States
- Various Representations of Wave Function
- Probability Current Density
- Uncertainty in Operators
- Shortcut for Calculating Momentum Expectation Value
The commutator bracket of two operators A and B is defined as: [$\hat{A,}\hat{B}]=\hat{A}\hat{B}-\hat{B}\hat{A}.$ Example: (1) $\left[\hat{x},\frac{d}{dx}\right]\psi$ = $\hat{x}$$\frac{d\psi}{dx}-\frac{d}{dx}(\hat{x}\psi)$ =$x\frac{d\psi}{dx}-x\frac{d\psi}{dx}-\psi$ =$-\psi$ $\Longrightarrow\left[\hat{x},\frac{d}{dx}\right]$ = $-1$ (2) $\left[\hat{x},\hat{p_{x}}\right]\psi$ = $\hat{x}\hat{p_{x}}\psi-\hat{p_{x}}\hat{x}\psi$ = $-i\hbar x\frac{\partial\psi}{\partial x}+i\hbar\frac{\partial}{\partial x}(x\psi)$ = $i\hbar\psi$ $\Longrightarrow\left[\hat{x},\hat{p_{x}}\right]$ = $i\hbar$ Similarly, $\left[\hat{y},\hat{p}_{y}\right]$ = $i\hbar$ and $\left[\hat{z},\hat{p}_{z}\right]=i\hbar$ Properties of the commutator bracket: 1. $\left[\hat{A,}\hat{B}\right]=-\left[\hat{B},\hat{A}\right]$ 2. $\left[\hat{A,}\hat{B}+\hat{C}+\hat{D}+…..\right]=\left[\hat{A},\hat{B}\right]+\left[\hat{A},\hat{C}\right]+…..$ 3. $[\hat{A},\hat{B}]^{\dagger}$ = $[\hat{B}^{\dagger},\hat{A}^{\dagger}]$ 4. $\left[\hat{A,}\hat{B}\hat{C}\right]=\left[\hat{A},\hat{B}\right]\hat{C}+\hat{B}\left[\hat{A},\hat{C}\right]$ 5. $\left[\hat{A,}\left[\hat{B},\hat{C}\right]\right]+\left[\hat{B},\left[\hat{C},\hat{A}\right]\right]+\left[\hat{C},\left[\hat{A},\hat{B}\right]\right]=0$ 6.$\left[\hat{A,} ƒ(\hat{A})\right]=0$ 7. $\left[ƒ(\hat{A}),G(\hat{A})\right]=0$ 8. $\left[ƒ(\hat{A}),G(\hat{B})\right]=0$ only if $\left[\hat{A},\hat{B}\right]=0$ 9. $\left[\hat{A},\hat{B}^{n}\right]=n\hat{B}^{n-1}\left[\hat{A},\hat{B}\right]$ 10. $\left[\hat{A}^{n},\hat{B}\right]=n\hat{A}^{n-1}\left[\hat{A},\hat{B}\right]$