- Origin of Quantum Physics
- Wave function
- Collapse of Wave Function
- Physically Accepted Wave function
- Normalization Explained
- Method of Normalization
- Orthogonality & Orthonormality
- Hilbert Space
- Quantization Rules
- Operator Formalism
- Commutator Bracket
- Linear Operator
- Hermitian Operator
- Projection Operator
- Unitary Operator
- Parity Operator
- Expectation Value
- Schrodinger Equation
- Wave-Particle Duality Using Schrodinger Equation
- Superposition of States
- Various Representations of Wave Function
- Probability Current Density
- Uncertainty in Operators
- Shortcut for Calculating Momentum Expectation Value
Consider a particle of mass ‘m’ is moving along the x axis, under the potential field:
$V\left(x\right)$
which is independent of time. The total energy of the system can be written as:
$E=E_{k}+E_{p}=\frac{P(x)^{2}}{2m}+V\left(x\right)$
Now, the 1-D time-dependent Schrodinger equation for the system can be written as:
$\hat{H}\psi=\hat{E}\psi$
$\Longrightarrow-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\psi}{\partial x^{2}}+V(x)\psi=i\hbar\frac{\partial\psi}{\partial\text{${t}$}}$
Solution of 1-D time-dependent Schrodinger equation:
Let,
$\psi(x,t)=X(x)T(t)$
Replacing this in the 1-D time-dependent Schrodinger equation:
$\Longrightarrow\frac{-\hbar^{2}}{2m}\text{${T}$}\frac{\partial^{2}\psi}{\partial x^{2}}+VXT=i\hbar X\frac{\partial T}{\partial\text{t}}$
$\Longrightarrow-\frac{\hbar^{2}}{2m}\frac{1}{X}\frac{d^{2}X}{dx}+V=\frac{i\hbar}{T}\frac{\partial T}{\partial\text{t}}=E(constant)$
Time-dependent part:
$i\hbar\frac{1}{T}\text{${\tau}$}\frac{\partial T}{\partial t}=E$
$\Longrightarrow\frac{\partial T}{T}=\frac{E}{i\hbar}\partial\text{t}=-\frac{i}{\hbar}Edt$
$\Longrightarrow T(t)=Ce^{-t\frac{E}{\hbar}t}$
Therefore, the time-dependent part of the solution of the 1-D Schrodinger equation is independent of:
$V\left(x\right)$.
Time-independent part:
$-\frac{\hbar^{2}}{2m}\frac{1}{X}\frac{d^{2}X}{dx}+V=E$
$\Longrightarrow-\frac{\hbar}{2m}\frac{d^{2}X}{dx^{2}}+VX=EX$
$\Longrightarrow\frac{d^{2}X}{dx^{2}}+\frac{2m}{\hbar^{2}}\frac{d^{2}X}{dx^{2}}\left[E-V(x)\right]X=0$
Therefore, the time-independent part of the solution of the 1-D Schrodinger equation depends on the nature of: $V\left(x\right)$.
Time-Dependent
The solution of the 1-D time-dependent Schrodinger equation can be written as:
$\psi(x,t)=X(x)T(t)=X(x)e^{-iEt/\hbar}$
Now, if:
$\psi_{1}(x,t),\psi_{2}(x,t)…..\psi_{n}(x,t)$
are the solutions of the 1-D Schrodinger equation corresponding to energies
$E_{1}E_{2}E_{3}…..E_{N},$
then the general solution is:
$\psi(x,t)=\psi_{1}(x,t)+\psi_{2}(x,t)+….$
$=C_{1}X_{1}(x)e^{-iE_{1}\frac{t}{\hbar}}+C_{2}X_{2}(x)e^{-iE_{2}\frac{t}{\hbar}}+C_{3}X_{3}(x)e^{-iE_{3}\frac{t}{\hbar}}+….$
$=\sum_{n}C_{n}X_{n}(x)e^{-iE_{2}\frac{t}{\hbar}}$