Menu Close

Operator Formalism | Quantum Mechanics

Operator Formalism

An operator is a mathematical rule (or procedure) that operating on one function transforms it into another function i.e.

$Â\psi(x)=\phi(x),$

Every dynamical variable in Quantum mechanics is represented by an operator.

OperationsSymbol

Result of the operation

Taking the square root$\sqrt{x^{m}}=x^{m/2}$
Differentiation w.r.t. x$\frac{d}{dx}$$\frac{d}{dx}(x^{m})=mx^{m-1}$
Position of Operator:$\hat{x},\hat{y},\hat{z}$ 
Momentum Operator$\hat{p}$

$\hat{p_{x}}=-i\hbar\frac{\partial}{\partial x},$

$\hat{p_{y}}=-i\hbar\frac{\partial}{\partial y},$

$\hat{p_{z}}=-i\hbar\frac{\partial}{\partial z}$

$\hat{p}=-i\hbar\overrightarrow{\nabla}$

Potential Energy Operator$\hat{V}$ 
Kinetic Energy Operator (Hamiltonian Operator)$\hat{K}$

$\hat{K}$ = $\frac{\hat{p}^{2}}{2m}=-\frac{\hbar^{2}}{2m}\overrightarrow{\nabla}^{2}$

Energy Operator$(\hat{E})$$i\hbar\frac{\partial}{\partial t}$

More Related Stuff